EmbASP Documentation
Release 6.0

DeMaCS-Unical

Jul 12, 2020

Documentation

1 Documentation 3
.1 Javaimplementation o i i e e e e e e e e e e e e e 3
1.2 Pythonimplementation 4
1.3 C#implementation 5
1.4 Technical documentation o i it e e e e e e e 7
1.5 Implementations i i e e e e e e e e e e e e e e e e e 7
1.6 Technical documentation 0 i v i i i e e e e e e e e e e e e 7
2 Examples 9
2.1 Shortest-path ASPJava. e e e e e e 9
2.2 Shortest-path ASP Python e e 12
2.3 Shortest-path ASP CH# L e e e e 15
2.4 Blocks-world PDDL Java e e e e e e 18
2.5 Blocks-world PDDL Python e 20
2.6 Blocks-world PDDL C# e 22
2.7 Sudoku Android L e 25
2.8 Desktop ASPexemples e e 27
2.9 Desktop PDDL examples e 27
2.10 Androidexample L e e e 28
3 Contacts 29

EmbASP Documentation, Release 6.0

A framework for the integration (embedding) of Logic Programming in external systems for generic applications. It
helps developers at designing and implementing complex reasoning tasks by means of solvers on different platforms.

The framework can be implemented in a object-oriented programming language of choice, easing and guiding the
generation of suitable libraries for the use of specific solvers on selected platforms. We currently provide 3 imple-
mentations (in Java , in Python and in C#) and ready-made libraries for the embedding of the ASP (Answer Set
Programming) solvers DLV , DLV2 , clingo , DLVHEX and the PDDL (Planning Domain Definition Language) cloud
solver Solver.Planning.Domains (SPD) on the Desktop platform and of DLV and SPD on the Mobile (Android™) one
(available only for the Java version).

However, the framework has been designed to be easily extensible and adaptable to different solvers and platforms. It
is worth to notice that solvers are invoked in different modes; for instance, SPD is invoked via a remote connection,
while for the other, binaries are effectively embedded and natively executed.

Documentation 1

https://www.java.com
https://www.python.org
https://docs.microsoft.com/en-us/dotnet/csharp/
http://www.dlvsystem.com/dlv
https://www.mat.unical.it/DLV2
https://potassco.org/clingo
http://www.kr.tuwien.ac.at/research/systems/dlvhex/
http://solver.planning.domains

EmbASP Documentation, Release 6.0

2 Documentation

CHAPTER 1

Documentation

1.1 Java implementation

The following figure provides some details about classes and interfaces of the implementation.

1.1.1 Base module implementation
Each component in the Base module has been implemented by means of an abstract class, generic class or interface
that will specialize in the following packages.

In particular, the Handler class collects InputProgram and OptionDescriptor objects communicated by
the user.

For what the asynchronous mode is concerned, the interface Service depends from the interface CallBack, since
once the reasoning service has terminated, the result of the computation is returned back via a class Cal1lBack.

1.1.2 Platforms module implementation

In order to support a new platform, the Handler and Service components must be adapted.

As for the Android platform, we developed an AndroidHandler that handles the execution of an
AndroidService, which provides facilities to manage the execution of a solver on the Android platform.

Similarly, for the desktop platform we developed a DesktopHandler andaDesktopService, which generalizes
the usage of a solver on the desktop platform, allowing both synchronous and asynchronous execution modes.

1.1.3 Languages module implementation

This module includes specific classes for the management of input and output to ASP and PDDL solvers.

The Mapper component of the Languages module is implemented via a Mapper class, that allows to translate input
and output into Java objects. Such translations are guided by ANTLR4 library and Java Annotations , a form of

../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Handler.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1InputProgram.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1OptionDescriptor.html
../_static/doxygen/java/interfaceit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Service.html
../_static/doxygen/java/interfaceit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Callback.html
../_static/doxygen/java/interfaceit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Callback.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Handler.html
../_static/doxygen/java/interfaceit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Service.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1android_1_1AndroidHandler.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1android_1_1AndroidService.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopHandler.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopService.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1Mapper.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1Mapper.html
https://www.antlr.org/
https://docs.oracle.com/javase/tutorial/java/annotations

EmbASP Documentation, Release 6.0

metadata that mark Java code and provide information that is not part of the program itself: they have no direct effect
on the operation of the code they annotate.

In our setting, we make use of such feature so that it is possible to translate facts into strings and vice-versa via two
custom annotations, defined according to the following syntax:

* @]d (string_name) : the target must be a class, and defines the predicate name (in the ASP case) and the action
name (in the PDDL case) the class is mapped to;

* @Param (integer_position) : the target must be a field of a class annotated via @Id, and defines the term (and
its position) in the atom (in the ASP case) and in the action (in the PDDL case) the field is mapped to.

By means of the Java Reflection mechanisms, annotations are examined at runtime, and taken into account to properly
define the translation.

If the classes intended for the translation are not annotated or not correctly annotated, an exception is raised.

In addition to the Mapper, this module features two sub-modules which are more strictly related to ASP and PDDL.

1.1.4 Specialization module Implementation

The classes DLVAnswerSets, DLV2AnswerSets, ClingoAnswerSets, DLVHEXAnswerSets and
SPDP 1an implement specific extensions of the AnswerSets or P1an classes, in charge of manipulating the output
of the respective solvers.

Moreover, this module can contain classes extending Opt ionDescriptor to implement specific options of the
solver at hand.

1.1.5 Class Diagram

A complete UML Class Diagram is available here.

For further information, contact embasp @mat.unical.it or visit our website.

1.2 Python implementation

The following figure provides some details about classes and interfaces of the implementation.

1.2.1 Base module implementation
Each component in the Base module has been implemented by means of generic class or interface that will specialize
in the following packages.

In particular, the Handler class collects InputProgram and OptionDescriptor objects communicated by
the user.

For what the asynchronous mode is concerned, the class Service depends from the interface Cal1Back, since once
the reasoning service has terminated, the result of the computation is returned back via a class CallBack.

4 Chapter 1. Documentation

https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/index.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1Mapper.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1dlv_1_1DLVAnswerSets.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1dlv2_1_1DLV2AnswerSets.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1clingo_1_1ClingoAnswerSets.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1dlvhex_1_1DLVHEXAnswerSets.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1solver__planning__domains_1_1SPDPlan.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1AnswerSets.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1pddl_1_1Plan.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1OptionDescriptor.html
../_static/complete_diagram_java.svg
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/
../_static/doxygen/python/classbase_1_1handler_1_1Handler.html
../_static/doxygen/python/classbase_1_1input__program_1_1InputProgram.html
../_static/doxygen/python/classbase_1_1option__descriptor_1_1OptionDescriptor.html
../_static/doxygen/python/classbase_1_1service_1_1Service.html
../_static/doxygen/python/classbase_1_1callback_1_1Callback.html
../_static/doxygen/python/classbase_1_1callback_1_1Callback.html

EmbASP Documentation, Release 6.0

1.2.2 Platforms module implementation

In order to support a new platform, the Handler and Service components must be adapted.

For the desktop platform we developed a DesktopHandler andaDesktopService, which generalizes the usage
of a solver on the desktop platform, allowing both synchronous and asynchronous execution modes.

1.2.3 Languages module implementation

This module includes specific classes for the management of input and output to ASP and PDDL solvers.

The Mapper component of the Languages module is implemented via a Mapper class, that allows to translate input
and output into Python objects. Such translations are guided by ANTLR4 library and Predicate abstract class, also
present in the module.

To make possible translate facts into strings and vice versa, the classes that want to represent a predicate, must extend
the abstract class Predicate, and must be implemented by including the following code:

e predicateName="string_name” : must be entered as a class field and must contain the predicate name (in the
ASP case) or the action name (in the PDDL case) to map;

o [(“class_field_name_1", int), (“class_field_name_2"), ...] : Is a list that must be passed to super in the con-
structor, and must contain so many tuples how many are the class field, containing the field name, sorted by the
position of the terms they represent, and optionally the keyword int if the field represents an integer.

Thanks to the structure of the Predicate class, this information is passed to the Mapper class, to correctly perform
the translation mechanism.

If the classes intended for the translation are not constructed correctly in this way, an exception is raised.

In addition to the Mapper, this module features two sub-modules which are more strictly related to ASP and PDDL.

1.2.4 Specialization module implementation

The classes DLVAnswerSets, DLV2AnswerSets, ClingoAnswerSets, DLVHEXAnswerSets and
SPDP 1an implement specific extensions of the AnswerSets or P1an classes, in charge of manipulating the output
of the respective solvers.

Moreover, this module can contain classes extending Opt ionDescriptor to implement specific options of the
solver at hand.

1.2.5 Class Diagram

A complete UML Class Diagram is available here.

For further information, contact embasp @mat.unical.it or visit our website.

1.3 C# implementation

The following figure provides some details about classes and interfaces of the implementation.

1.3. C# implementation 5

../_static/doxygen/python/classbase_1_1handler_1_1Handler.html
../_static/doxygen/python/classbase_1_1service_1_1Service.html
../_static/doxygen/python/classplatforms_1_1desktop_1_1desktop__handler_1_1DesktopHandler.html
../_static/doxygen/python/classplatforms_1_1desktop_1_1desktop__service_1_1DesktopService.html
../_static/doxygen/python/classlanguages_1_1mapper_1_1Mapper.html
../_static/doxygen/python/classlanguages_1_1mapper_1_1Mapper.html
https://www.antlr.org/
../_static/doxygen/python/classlanguages_1_1predicate_1_1Predicate.html
../_static/doxygen/python/classlanguages_1_1predicate_1_1Predicate.html
../_static/doxygen/python/classlanguages_1_1predicate_1_1Predicate.html
../_static/doxygen/python/classlanguages_1_1mapper_1_1Mapper.html
../_static/doxygen/python/classlanguages_1_1mapper_1_1Mapper.html
../_static/doxygen/python/classspecializations_1_1dlv_1_1dlv__answer__sets_1_1DLVAnswerSets.html
../_static/doxygen/python/classspecializations_1_1dlv2_1_1dlv2__answer__sets_1_1DLV2AnswerSets.html
../_static/doxygen/python/classspecializations_1_1clingo_1_1clingo__answer__sets_1_1ClingoAnswerSets.html
../_static/doxygen/python/classspecializations_1_1dlvhex_1_1dlvhex__answer__sets_1_1DLVHEXAnswerSets.html
../_static/doxygen/python/classspecializations_1_1solver__planning__domains_1_1spd__plan_1_1SPDPlan.html
../_static/doxygen/python/classlanguages_1_1asp_1_1answer__sets_1_1AnswerSets.html
../_static/doxygen/python/classlanguages_1_1pddl_1_1plan_1_1Plan.html
../_static/doxygen/python/classbase_1_1option__descriptor_1_1OptionDescriptor.html
../_static/complete_diagram_python.svg
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/

EmbASP Documentation, Release 6.0

1.3.1 Base module implementation
Each component in the Base module has been implemented by means of abstract class, generic class or interface that
will specialize in the following packages.

In particular, the Handler class collects InputProgram and OptionDescriptor objects communicated by
the user.

For what the asynchronous mode is concerned, the class Service depends from the interface CallBack, since once
the reasoning service has terminated, the result of the computation is returned back via a class Cal1BRack.

1.3.2 Platforms module implementation

In order to support a new platform, the Handler and Service components must be adapted.

For the desktop platform we developed a DesktopHandler andaDesktopService, which generalizes the usage
of a solver on the desktop platform, allowing both synchronous and asynchronous execution modes.

1.3.3 Languages module implementation

This module includes specific classes for the management of input and output to ASP and PDDL solvers.

The Mapper component of the Languages module is implemented via a Mapper class, that allows to translate input
and output into C# objects. Such translations are guided by ANTLR4 library and C# Attributes, a form of metadata
that mark C# code and provide information that is not part of the program itself: they have no direct effect on the
operation of the code they annotate.

In our setting, we make use of such features so that it is possible to translate facts into strings and vice-versa via two
custom attributes, defined according to the following syntax:

 [Id(string_name)] : the target must be a class, and defines the predicate name (in the ASP case) and the action
name (in the PDDL case) the class is mapped to;

 [Param(integer_position)] : the target must be a field of a class annotated via [Id(string_name)], and defines the
term (and its position) in the atom (in the ASP case) and in the action (in the PDDL case) the field is mapped to.

By means of the C# Reflection mechanism, attributes are examined at runtime, and taken into account to properly
define the translation.

If the classes intended for the translation are not annotated or not correctly annotated, an exception is raised.

In addition to the Mapper, this module features two sub-modules which are more strictly related to ASP and PDDL.

1.3.4 Specialization module implementation

The classes DLVAnswerSets, DLV2AnswerSets, ClingoAnswerSets, DLVHEXAnswerSets and
SPDP lan implement specific extensions of the AnswerSets or P1lan classes, in charge of manipulating the output
of the respective solvers.

Moreover, this module can contain classes extending OptionDescriptor to implement specific options of the
solver at hand.

1.3.5 Class Diagram

A complete UML Class Diagram is available here.

6 Chapter 1. Documentation

../_static/doxygen/cSharp/classbase_1_1Handler.html
../_static/doxygen/cSharp/classbase_1_1InputProgram.html
../_static/doxygen/cSharp/classbase_1_1OptionDescriptor.html
../_static/doxygen/cSharp/interfacebase_1_1Service.html
../_static/doxygen/cSharp/interfacebase_1_1ICallback.html
../_static/doxygen/cSharp/interfacebase_1_1ICallback.html
../_static/doxygen/cSharp/classbase_1_1Handler.html
../_static/doxygen/cSharp/interfacebase_1_1Service.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopHandler.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopService.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1Mapper.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1Mapper.html
https://www.antlr.org/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/attributes/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1Mapper.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1dlv_1_1DLVAnswerSets.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1dlv2_1_1DLV2AnswerSets.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1clingo_1_1ClingoAnswerSets.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1dlvhex_1_1DLVHEXAnswerSets.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1solver__planning__domains_1_1SPDPlan.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1AnswerSets.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1pddl_1_1Plan.html
../_static/doxygen/cSharp/classbase_1_1OptionDescriptor.html
../_static/complete_diagram_csharp.svg

EmbASP Documentation, Release 6.0

For further information, contact embasp @mat.unical.it or visit our website.

1.4 Technical documentation

1.4.1 Doxygen

* Java Doxygen documentation
* Python Doxygen documentation

e C# Doxygen documentation

For further information, contact embasp @mat.unical.it or visit our website.

1.5 Implementations

* Java implementation
* Python implementation

» C# implementation

1.6 Technical documentation

e Technical documentation

1.4. Technical documentation 7

mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/
../_static/doxygen/java/index.html
../_static/doxygen/python/index.html
../_static/doxygen/cSharp/index.html
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/

EmbASP Documentation, Release 6.0

8 Chapter 1. Documentation

CHAPTER 2

Examples

2.1 Shortest-path ASP Java

2.1.1 Getting started

The framework is released as JAR file to be used on a Desktop platform, therefore it can be easily imported and used
in any Java project.

The framework needs ANTLR4 library for its operation. You can download the JAR and include directly in your
project or you can use Gradle or Maven.

2.1.2 Using EmbASP

In the following, we describe an actual usage of the framework by means of a running example; as a use case, we will
develop a simple Desktop application to solve the shortest-path problem.

The complete code of this example is freely available here.
()
On0.

https://www.antlr.org
https://www.mat.unical.it/calimeri/projects/embasp/files/ShortestPathJava.zip

EmbASP Documentation, Release 6.0

We will make use of the annotation-guided mapping, in order to create Java object constituting ASP predicates.

To this purpose, the following classes are intended to represent possible predicates that an ASP program can use:

@Id ("edge")
public class Edge {

@Param(0)
private int from;

@Param (1)
private int to;

@Param(2)
private int weight;

public
this.
this.
this

Edge (int from,
from = from;

to to;
.weight =

int to,

weight;

int weight) {

@QId ("path")
public class Path ({

@Param (0)
private int from;

@Param (1)
private int to;

@Param(2)
private int weight;

Path (int from,
from = from;

to to;
.weight =

public
this.
this.
this

int to,

weight;

int weight) {

At this point, supposing that we have embedded the DLV?2 solver in this project, we can start deploying our application:

public class ShortestPath {

private static int from, to;

private static ArraylList<Integer> sortedPath;

— (sorted)

public static void main (String][]

try {

// source and destination node

args) {

// edges in the shortest path,

(continues on next page)

10

Chapter 2. Examples

EmbASP Documentation, Release 6.0

(continued from previous page)

Handler handler = new DesktopHandler (new DLV2DesktopService ("executable/dlv2"));

ASPMapper.getInstance () .registerClass (Edge.class);
ASPMapper.getInstance () .registerClass (Path.class);

InputProgram input = new ASPInputProgram() ;

from = 0;

to = 7;
String rules = "from(" + from + "). to(" + to + ")."
+ "path(X,Y,W) | notPath(X,Y,W) :— from(X), edge(X,Y,W)."
+ "path(X,Y,W) | notPath(X,Y,W) :- path(_,X,_), edge(X,Y,W), not to(X)."
+ "visited(X) :- path(_,X,_)."
+ ":- to(X), not visited(X)."
+ ":~ path(X,Y,W). [WQ@l ,X,Y]";

input.addProgram(rules) ;

for (Edge edge : getEdges())
input.addObjectInput (edge) ;

handler.addProgram (input) ;
AnswerSets answerSets = (AnswerSets) handler.startSync();
for (AnswerSet answerSet : answerSets.getOptimalAnswerSets()) {

ArrayList<Path> path = new ArrayList<Path>(); // edges in the shortest path_
— (unsorted)
int sum = 0; // total weight of the path

for (Object obj : answerSet.getAtoms()) {
if (obj instanceof Path) {
path.add((Path)obj);
sum += ((Path)obj) .getWeight ();

join (from, path, sortedPath) ; // sorts the edges
print (sortedPath, sum) ; // shows the path

} catch (Exception e) {
e.printStackTrace () ;

private static ArraylList<Edge> getEdges () {
ArrayList<Edge> edges = new ArrayList<Edge> () ;

edges.add (new Edge (0,1,1))
edges.add (new Edge (0,2,4))
edges.add (new Edge (1,2,2));
edges.add (new Edge (1,3,4))
edges.add (new Edge(1,4,1))

(continues on next page)

2.1. Shortest-path ASP Java 11

EmbASP Documentation, Release 6.0

(continued from previous page)

edges.add (
edges.add (
edges.add (
edges.add (new Edge
edges.add (
edges.add (
edges.add (
edges.add (

return edges;

The class contains an Handler instance as field, that is initialized with a DesktopHandler using the parameter
DLV2DesktopService with a string representing the path to the DLV2 local solver.

The ASPMapper registers the classes created before in order to manage the input and output objects.

A string and a list of Edge representing facts, rules and constraints of the ASP program are added to an
ASPInputProgram, and the ASPInputProgram is added to the Handler.

Finally the solver is invoked, and the output is retrieved.

The output predicates can be managed accordingly to the user’s desiderata. In this example the Path predicates, that
represent the shortest path, are collected, sorted, and printed as well as the total weight of the path.

For further information, contact embasp @mat.unical.it or visit our website.

2.2 Shortest-path ASP Python

2.2.1 Getting started

The framework is released as EGG file to be used on a Desktop platform, therefore it can be easily installed in a Python
installation.

The framework needs ANTLR4 library for its operation.

2.2.2 Using EmbASP

In the following, we describe an actual usage of the framework by means of a running example; as a use case, we will
develop a simple Desktop application to solve the shortest-path problem.

The complete code of this example is freely available here.

12 Chapter 2. Examples

../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Handler.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopHandler.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1dlv2_1_1desktop_1_1DLV2DesktopService.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1ASPMapper.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1ASPInputProgram.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1ASPInputProgram.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Handler.html
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/
https://www.antlr.org/
https://www.mat.unical.it/calimeri/projects/embasp/files/ShortestPathPython.zip

EmbASP Documentation, Release 6.0

O8O0
=) 9'0 =
On0

We will make use of the annotation-guided mapping, in order to create Python object constituting ASP predicates.

To this purpose, the following classes are intended to represent possible predicates that an ASP program can use:

class Edge (Predicate):

predicate_name = "edge"

def _ _init__ (self, source=None, destination=None, weight=None) :
Predicate.__init__ (self, [("source"), ("destination"), ("weight")])
self.source = source

self.destination = destination
self.weight = weight

class Path (Predicate) :

predicate_name = "path"

def _ init__ (self, source=None, destination=None, weight=None) :
Predicate.__init__ (self, [("source"), ("destination"), ("weight")])
self.source = source

self.destination = destination
self.weight = weight

At this point, supposing that we have embedded the DLV?2 solver in this project, we can start deploying our application:

def getEdges|() :
edges = []

edges.append (Edge (0,1,1))
edges.append (Edge (0,2,4))
edges.append (Edge (1,2,2))
edges.append (Edge (1, 3,4))
edges.append (Edge (1,4,1))
edges.append (Edge (2,4,4))
edges.append (Edge (3,5, 6))
edges.append (Edge (3,6,1))
edges.append (Edge (4,3,1))

(continues on next page)

2.2. Shortest-path ASP Python 13

EmbASP Documentation, Release 6.0

(continued from previous page)

edges.append
edges .append
edges.append
edges.append

Edge
Edge
Edge
Edge

return edges
try:
handler = DesktopHandler (DLV2DesktopService ("../../executable/dlv2"))

ASPMapper.get_instance () .register_class (Edge)
ASPMapper.get_instance () .register_class (Path)

inputProgram = ASPInputProgram/()

source = 0 # source node

destination = 7 # destination node

rules = "source (" + str(self.source) + "). destination(" + str(self.destination) +
;}") ."

rules += "path(X,Y,W) | notPath(X,Y,W) :- source(X), edge(X,Y,W)."

rules += "path(X,Y,W) | notPath(X,Y,W) :- path(_,X,_), edge(X,Y,W), not to(X)."

rules += "visited(X) :— path(_,X,_)."

rules += ":- destination(X), not visited(X)."

rules += ":~ path(X,Y,wW). [we@el ,X,Y]"

inputProgram.add_program(rules)
inputProgram.add_objects_input (self.getEdges())

handler.add_program(inputProgram)
answerSets = handler.start_sync ()

for answerSet in answerSets.get_optimal_answer_sets () :
path = [] # edges in the shortest path (unsorted)
sum_ = O # total weight of the path

for obj in answerSet.get_atoms() :
if isinstance(obj, Path):
path.append (obj)
sum_ += int (obj.get_weight ())

sortedPath = [] # edges in the shortest path (sorted)
join (source, path, sortedPath) # sorts the edges
show (sortedPath, sum_) # shows the path

except Exception as e:
print (str(e))

The class contains an Handler instance as field, that is initialized with a DesktopHandler using the parameter
DLV2DesktopService with a string representing the path to the DLV2 local solver.

The ASPMapper registers the classes created before in order to manage the input and output objects.

A string and a list of Edge representing facts, rules and constraints of the ASP program are added to an
ASPInputProgram, and the ASPInputProgramis added to the Handler.

14 Chapter 2. Examples

../_static/doxygen/python/classbase_1_1handler_1_1Handler.html
../_static/doxygen/python/classplatforms_1_1desktop_1_1desktop__handler_1_1DesktopHandler.html
../_static/doxygen/python/classspecializations_1_1dlv2_1_1desktop_1_1dlv2__desktop__service_1_1DLV2DesktopService.html
../_static/doxygen/python/classlanguages_1_1asp_1_1asp__mapper_1_1ASPMapper.html
../_static/doxygen/python/classlanguages_1_1asp_1_1asp__input__program_1_1ASPInputProgram.html
../_static/doxygen/python/classlanguages_1_1asp_1_1asp__input__program_1_1ASPInputProgram.html
../_static/doxygen/python/classbase_1_1handler_1_1Handler.html

EmbASP Documentation, Release 6.0

Finally the solver is invoked, and the output is retrieved.

The output predicates can be managed accordingly to the user’s desiderata. In this example the Path predicates, that
represent the shortest path, are collected, sorted, and printed as well as the total weight of the path.

For further information, contact embasp @mat.unical.it or visit our website.

2.3 Shortest-path ASP C#

2.3.1 Getting started

The framework is released as DLL file to be used on a Desktop platform, therefore it can be easily added and used in
any C# project.

2.3.2 Using EmbASP

In the following, we describe an actual usage of the framework by means of a running example; as a use case, we will
develop a simple Desktop application to solve the shortest-path problem.

The complete code of this example is freely available here.
00
OO

We will make use of the annotation-guided mapping, in order to create C# object constituting ASP predicates.

To this purpose, the following classes are intended to represent possible predicates that an ASP program can use:

[Id("edge")]
class Edge

{
[Param (0)]
private int from;

[Param (1)]
private int to;

(continues on next page)

2.3. Shortest-path ASP Ci# 15

mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/
https://www.mat.unical.it/calimeri/projects/embasp/files/ShortestPathCSharp.zip

EmbASP Documentation, Release 6.0

(continued from previous page)

[Param(2)]
private int weight;

public Edge (int from, int to, int weight)
{

this.from = from;

this.to = to;

this.weight = weight;

[Id("path")]
class Path

{
[Param (0)
private int from;

[Param (1)
private int to;

[Param(2)]
private int weight;

public Path(int from, int to, int weight)
{

this.from = from;

this.to = to;

this.weight = weight;

At this point, supposing that we have embedded the DLV2 solver in this project, we can start deploying our application:

class ShortestPath
{

private static int from, to; // source and destination node
private static List<int> sortedPath; // edges in the shorted path (sorted)

public static void Main (string[] args)
{

try
{
Handler handler = new DesktopHandler (new DLV2DesktopService("../../../
—executable/dlv2.win"));

ASPMapper.Instance.RegisterClass (typeof (Edge)) ;
ASPMapper.Instance.RegisterClass (typeof (Path)) ;

InputProgram input = new ASPInputProgram();

from = 0;

to = 7;
String rules = "from(" + from + ").to(" + to + ")." +
"path(X,Y,W) | notPath(X,Y,W) :- from(X), edge(X,Y,W)." +
"path (X,Y,W) | notPath(X,Y,W) :- path(_,X,_), edge(X,Y,W), not to(X)." +
"visited(X) :— path(_,X,_)." +
":— to(X), not visited(X)." +

(continues on next page)

16 Chapter 2. Examples

EmbASP Documentation, Release 6.0

(continued from previous page)

":~ path(X,Y,W). [WQl ,X,Y]";
input.AddProgram(rules) ;
foreach (Edge edge in getEdges|())
{

input .AddObjectInput (edge) ;
handler.AddProgram (input) ;

AnswerSets answerSets = (AnswerSets)handler.StartSync();

foreach (AnswerSet answerSet in answerSets.GetOptimalAnswerSets())

{

List<Path> path = new List<Path>(); // edges in the shortest path,
— (unsorted)
int sum = 0; // total weight of the path

foreach (object obj in answerSet.Atoms)
{
if (typeof (Path) .IsInstanceOfType (ob7j))

{
path.Add ((Path)obj);

sum += ((Path)obij).getWeight () ;
t
}
join (from, path, sortedPath); // sorts the edges
print (sortedPath, sum); // show the result

}

catch (Exception e)

{

Console.WritelLine (e.Source) ;

private static List<Edge> getEdges ()

{
List<Edge> edges = new List<Edge>();

edges.Add (new Edge (0
edges.Add (new Edge (0
edges.Add (new Edge (1
edges.Add (new Edge (1
edges.Add (new Edge (1
edges.Add (new Edge (2
edges.Add (new Edge (3,
(3
(4
(6
(6
(6
(7

~
~.

~ 0~ 0~ N
Ne Ne Ne N

~
o~

edges.Add (new Edge
edges.Add (new Edge
edges.Add (new Edge
edges.Add (new Edge
edges.Add (new Edge
edges.Add (new Edge

~
~.

~
~

~
~.

~
~

~
~

— — — = = = = = e = = — —
~

~
~

DO WwWo s s Wl N e
<
NP OUREFEGODSRFE SN

(continues on next page)

2.3. Shortest-path ASP Ci# 17

EmbASP Documentation, Release 6.0

(continued from previous page)

return edges;

}

[...]

The class contains an Handler instance as field, that is initialized with a DesktopHandler using the parameter
DLV2DesktopService with a string representing the path to the DLV2 local solver.

The ASPMapper registers the classes created before in order to manage the input and output objects.

A string and a list of Edge representing facts, rules and constraints of the ASP program are added to an
ASPInputProgram, and the ASPInputProgram is added to the Handler.

Finally the solver is invoked, and the output is retrieved.

The output predicates can be managed accordingly to the user’s desiderata. In this example the Path predicates, that
represent the shortest path, are collected, sorted, and printed as well as the total weight of the path.

For further information, contact embasp @mat.unical.it or visit our website.

2.4 Blocks-world PDDL Java

2.4.1 Getting started

The framework is released as JAR file to be used on a Desktop platform, therefore it can be easily imported and used
in any Java project.

The framework needs ANTLR4 library for its operation. You can download the JAR and include directly in your
project or you can use Gradle or Maven.

2.4.2 Using EmbASP

In the following, we describe an actual usage of the framework by means of a running example; as a use case, we will
develop a simple Desktop application to solve the blocks-world problem.

The complete code of this example is freely available here.

We will make use of the annotation-guided mapping, in order to retrieve the actions constituting a PDDL plan via Java
objects.

To this purpose, the following classes are intended to represent possible actions that a blocks-world solution plan can
feature:

QId("pick—up")
public class PickUp ({

@Param (0)

(continues on next page)

18 Chapter 2. Examples

../_static/doxygen/cSharp/classbase_1_1Handler.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopHandler.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1dlv2_1_1desktop_1_1DLV2DesktopService.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1ASPMapper.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1ASPInputProgram.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1ASPInputProgram.html
../_static/doxygen/cSharp/classbase_1_1Handler.html
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/
https://www.antlr.org
https://www.mat.unical.it/calimeri/projects/embasp/files/EmbASP_Desktop_BlocksWorld_Java.zip

EmbASP Documentation, Release 6.0

(continued from previous page)

private String block;

@Id ("put—-down")
public class PutDown ({

@Param(0)
private String block;

@Id("stack")
public class Stack {

@Param(0)
private String blockl;

@Param (1)
private String block2;

@Id("unstack")
public class Unstack {

@Param (0)
private String blockl;

@Param (1)
private String block2;

At this point, supposing that we are given two files defining the blocks-world domain and a problem instance, we can

start deploying our application:

public class Blocksworld ({

private static String domainFileName = "domain.pddl";

private static String problemFileName = "pOl.pddl";;

public static void main (String[] args) {
Handler handler = new DesktopHandler (new SPDDesktopService());

final InputProgram inputProgramDomain = new PDDLInputProgram (PDDLProgramType.

< DOMAIN) ;
inputProgramDomain.addFilesPath (domainFileName) ;

< PROBLEM) ;

final InputProgram inputProgramProblem = new PDDLInputProgram (PDDLProgramType.

(continues on next page)

2.4. Blocks-world PDDL Java

19

EmbASP Documentation, Release 6.0

(continued from previous page)

inputProgramProblem.addFilesPath (problemFileName) ;

handler.addProgram (inputProgramDomain) ;
handler.addProgram (inputProgramProblem) ;

try {

PDDLMapper.getInstance () .registerClass (PickUp.class) ;
PDDLMapper.getInstance () .registerClass (PutDown.class);
PDDLMapper.getInstance () .registerClass (Stack.class);

PDDLMapper.getInstance () .registerClass (Unstack.class) ;

Plan plan = (Plan) (handler.startSync());

for (final Object obj : plan.getActionsObjects|())
if (obj instanceof PickUp || obj instanceof Stack || obj instanceof Unstack
— || obj instanceof PutDown)
System.out.println(obj.toString());

} catch (Exception e) {
e.printStackTrace();

The class contains an Handler instance as field, that is initialized with a DesktopHandler using the required
parameter SPDDesktopService.

Then it’s set-up the input to the solver; since PDDL requires separate definitions for domain and problem, two
PDDLInputProgram are created and then given to the handler.

The next lines inform the PDDLMapper about what classes are intended to map the output actions.
Finally the solver is invoked, and the output is retrieved.

The output actions can be managed accordingly to the user’s desiderata.

For further information, contact embasp @mat.unical.it or visit our website.

2.5 Blocks-world PDDL Python

2.5.1 Getting started

The framework is released as EGG file to be used on a Desktop platform, therefore it can be easily installed in a Python
installation.

The framework needs ANTLR4 library for its operation.

20 Chapter 2. Examples

../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Handler.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopHandler.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopService.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1pddl_1_1PDDLInputProgram.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1pddl_1_1PDDLMapper.html
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/
https://www.antlr.org/

EmbASP Documentation, Release 6.0

2.5.2 Using EmbASP

In the following, we describe an actual usage of the framework by means of a running example; as a use case, we will
develop a simple Desktop application to solve the blocks-world problem.

The complete code of this example is freely available here.

We will make use of the annotation-guided mapping, in order to retrieve the actions constituting a PDDL plan via
Python objects.

To this purpose, the following classes are intended to represent possible actions that a blocks-world solution plan can
feature:

class PickUp (Predicate):
predicateName="pick-up"

def _ init_ (self, block=None) :
super (PickUp, self).__init__ ([("block™)])
self.block = block

class PutDown (Predicate):
predicateName="put-down"

def _ init_ (self, block=None) :
super (PutDown, self).__init__ ([("block")])
self.block = block

class Stack (Predicate):
predicateName="stack"

def _ init_ (self, blockl=None, block2=None) :
super (Stack, self).__init__ ([("blockl™), ("block2")])
self.blockl = blockl
self.block2 block2

class Unstack (Predicate):
predicateName="unstack"

def _ init_ (self, blockl=None, block2=None) :
super (Unstack, self).__init__ ([("blockl™), ("block2")])
self.blockl = blockl
self.block2 = block2

At this point, supposing that we are given two files defining the blocks-world domain and a problem instance, we can
start deploying our application:

handler = DesktopHandler (SPDDesktopService())

(continues on next page)

2.5. Blocks-world PDDL Python 21

https://www.mat.unical.it/calimeri/projects/embasp/files/EmbASP_Desktop_BlocksWorld_Python.zip

EmbASP Documentation, Release 6.0

(continued from previous page)

input_domain = PDDLInputProgram (PDDLProgramType.DOMAIN)
input_domain.add_files_path("../domain.pddl")

input_problem= PDDLInputProgram (PDDLProgramType.PROBLEM)
input_problem.add_files_path("../p0l.pddl")

handler.add_program(input_domain)
handler.add_program(input_problem)

PDDLMapper.get_instance () .register_class
PDDLMapper.get_instance () .register_class
PDDLMapper.get_instance () .register_class
PDDLMapper.get_instance () .register_class

PickUp)
PutDown)
Stack)
Unstack)

output = handler.start_sync()

for obj in output.get_actions_objects () :
if isinstance (obj, PickUp) isinstance (obj, PutDown)
—isinstance (obj, Unstack)
print (obj)

| isinstance (obj, Stack) |

The file contains an Handler instance as field, that is initialized with a DesktopHandler using the required
parameter SPDDesktopService.

Then it’s set-up the input to the solver; since PDDL requires separate definitions for domain and problem, two
PDDLInputProgram are created and then given to the handler.

The next lines inform the PDDLMapper about what classes are intended to map the output actions.
Finally the solver is invoked, and the output is retrieved.

The output actions can be managed accordingly to the user’s desiderata.

For further information, contact embasp @mat.unical.it or visit our website.

2.6 Blocks-world PDDL C#

2.6.1 Getting started

The framework is released as DLL file to be used on a Desktop platform, therefore it can be easily added and used in
any C# project.

2.6.2 Using EmbASP

In the following, we describe an actual usage of the framework by means of a running example; as a use case, we will
develop a simple Desktop application to solve the blocks-world problem.

The complete code of this example is freely available here.

22 Chapter 2. Examples

../_static/doxygen/python/classbase_1_1handler_1_1Handler.html
../_static/doxygen/python/classplatforms_1_1desktop_1_1desktop__handler_1_1DesktopHandler.html
../_static/doxygen/python/classplatforms_1_1desktop_1_1desktop__service_1_1DesktopService.html
../_static/doxygen/python/classlanguages_1_1pddl_1_1pddl__input__program_1_1PDDLInputProgram.html
../_static/doxygen/python/classlanguages_1_1pddl_1_1pddl__mapper_1_1PDDLMapper.html
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/
https://www.mat.unical.it/calimeri/projects/embasp/files/EmbASP_Desktop_BlocksWorld_CSharp.zip

EmbASP Documentation, Release 6.0

We will make use of the annotation-guided mapping, in order to retrieve the actions constituting a PDDL plan via C#
objects.

To this purpose, the following classes are intended to represent possible actions that a blocks-world solution plan can
feature:

[Id("pick-up")]
class PickUp
{
[Param (0)]
private string block;

[Id ("put-down")]
class PutDown
{
[Param(0)]
private string block;

[Id("stack")]
class Stack

{
[Param(0)]
private string blockl;

[Param (1)]
private string block2;

[Id("unstack")]
class Unstack
{
[Param (0)]
private string blockl;

[Param (1)]
private string block2;

At this point, supposing that we are given two files defining the blocks-world domain and a problem instance, we can
start deploying our application:

class Program
{
static void Main(string[] args)
{
Handler handler = new DesktopHandler (new SPDDesktopService());

(continues on next page)

2.6. Blocks-world PDDL C# 23

EmbASP Documentation, Release 6.0

(continued from previous page)

InputProgram inputDomain = new PDDLInputProgram (PDDLProgramType.DOMAIN) ;
inputDomain.AddFilesPath ("domain.pddl");

InputProgram inputProblem = new PDDLInputProgram (PDDLProgramType.PROBLEM) ;
inputProblem.AddFilesPath ("pOl.pddl");

handler.AddProgram (inputDomain) ;
handler.AddProgram(inputProblem) ;

try

{
PDDLMapper.Instance.RegisterClass (typeof (PickUp)) ;
PDDLMapper.Instance.RegisterClass (typeof (PutDown)) ;
PDDLMapper.Instance.RegisterClass (typeof (Stack));
PDDLMapper.Instance.RegisterClass (typeof (Unstack));

Plan plan = (Plan)handler.StartSync();

foreach (object obj in plan.ActionsObjects)

{
if (typeof (PickUp) .IsInstanceOfType (obj) || typeof (PutDown) .
—IsInstanceOfType (ocbj) ||
typeof (Stack) .IsInstanceOfType (obj) || typeof (Unstack) .
—IsInstanceOfType (obj))

{
Console.WriteLine (obj.ToString());

}

catch (Exception e)

{

Console.WriteLine (e.Message) ;

The class contains an Handler instance as field, that is initialized with a DesktopHandler using the required
parameter SPDDesktopService.

Then it’s set-up the input to the solver; since PDDL requires separate definitions for domain and problem, two
PDDLInputProgram are created and then given to the handler.

The next lines inform the PDDLMapper about what classes are intended to map the output actions.
Finally the solver is invoked, and the output is retrieved.

The output actions can be managed accordingly to the user’s desiderata.

For further information, contact embasp @mat.unical.it or visit our website.

24 Chapter 2. Examples

../_static/doxygen/cSharp/classbase_1_1Handler.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopHandler.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1solver__planning__domains_1_1desktop_1_1SPDDesktopService.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1pddl_1_1PDDLInputProgram.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1pddl_1_1PDDLMapper.html
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/

EmbASP Documentation, Release 6.0

2.7 Sudoku Android

2.7.1 Getting started

In order to use the framework in your applications you have to import it as module on Android Studio
1. Import the framework module:
* Download the framework last released module.
* In the project view, right-click on your project New > Module.
* Select Import .JAR/.AAR Package.
¢ Select the directory in which the module has been downloaded.
2. Set the dependency:
¢ In the Android Studio menu: File > Project Structure .
¢ Select your project module (by default called app).

¢ In the Dependencies Tab add as Module Dependency the previously imported framework.

2.7.2 Using EmbASP

In the following, we describe an actual usage of the framework by means of a running example; as a use case, we will
develop a simple Android application for solving Sudoku puzzles.

The complete code of this example is freely available here.

The framework features a annotation-guided mapping, offered by the ASPMapper component, for two-way transla-
tions between strings recognizable by ASP solvers and objects in the programming language at hand, directly employ-
able within applications. By means of this feature, the ASP-based aspects can be separated from the Java coding: the
programmer doesn’t even necessarily need to be aware of ASP.

Let us think of a user that designed (or has been given) a proper logic program P to solve a sudoku puzzle and has
also an initial schema. We assume that the initial schema is well-formed i.e. the complete schema solution exists and
is unique. A possible program P is embedded in the complete example, that, coupled with a set of facts F representing
the given initial schema, allows to obtain the only admissible solution.

By means of the annotation-guided mapping, the initial schema can be expressed in forms of Java objects. To this
extent, we define the class Cel1, aimed at representing the single cell of the sudoku schema, as follows:

@Id("cell")
public class Cell {

@Param(0)
private int row;

@Param (1)
private int column;

@Param(2)
private int value;

[...]

2.7. Sudoku Android 25

https://www.mat.unical.it/calimeri/projects/embasp/files/EmbASP_Android_Sudoku.zip
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1ASPMapper.html

EmbASP Documentation, Release 6.0

It is worth noticing how the class has been annotated by two custom annotations, defined according to the following
syntax:

* @Id(string_name) : the target must be a class, and defines the predicate name the class is mapped to;

* @ Param(integer_position) : the target must be a field of a class annotated via @/d, and defines the term (and its
position) in the ASP atom the field is mapped to.

Thanks to these annotations the ASPMapper class will be able to map Ce 11 objects into strings properly recognizable
from the ASP solver as logic facts of the form cell(Row,Column,Value). At this point, we can create an Android
Activity Component , and start deploying our sudoku application:

public class MainActivity extends AppCompatActivity {

private Handler handler;

@Override
protected void onCreate (Bundle bundle) {
handler = new AndroidHandler (getApplicationContext (), DLVAndroidService.class);

[...]

public void onClick (final View view) {
startReasoning () ;

[...]

public void startReasoning () {
InputProgram inputProgram = new InputProgram();
for (int i = 0; i < 9; 1i++){
for (int j = 0; j < 9; Jj++)
try {
if (sudokuMatrix[i] [j]!=0) {
inputProgram.addObjectInput (new Cell (i, j, sudokuMatrix[i][]j]));
}
} catch (Exception e) {
// Handle Exception

}
handler.addProgram (inputProgram) ;

String sudokuEncoding = getEncodingFromResources () ;
handler.addProgram (new InputProgram(sudokuEncoding)) ;

Callback callback = new MyCallback () ;
handler.startAsync (callback);

The class contains an Handler instance as field, that is initialized when the Activity is created as an
AndroidHandler. Required parameters include the Android Context (an Android utility, needed to start an An-
droid Service Component) and the type of AndroidService to use, in our case a DLVAndroidService.

In addiction, in order to represent an initial sudoku schema, the class features a matrix of integers as another field
where position (i,j) contains the value of cell (i,j) in the initial schema; cells initially empty are represented by positions
containing zero.

The method startReasoning is in charge of actually managing the reasoning: in our case, it is invoked in response to

26 Chapter 2. Examples

../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1ASPMapper.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Handler.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1android_1_1AndroidHandler.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1android_1_1AndroidService.html
../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1dlv_1_1android_1_1DLVAndroidService.html

EmbASP Documentation, Release 6.0

a click event that is generated when the user asks for the solution. It is firstly created an InputProgram object that
is filled with Cel1l objects representing the initial schema, which is then provided to the handler; then it is provided
with the sudoku encoding. It could be loaded, for instance, by means of an utility function that retrieves it from the
Android Resources folder, which, within Android applications, is typically meant for containing images, sounds, files
and resources in general.

At this point, the reasoning process can start; since for Android we provide only the asynchronous execution mode, a
Callback objectis in charge of fetching the output when the ASP system has done.

Finally, once the computation is over, from within the callback function the output can be retrieved directly in form of
Java objects. For instance, in our case an inner class MyCallback implements the interface Callback:

private class MyCallback implements Callback {

@Override
public void callback (Output o) {
if (! (0 instanceof AnswerSets))

return;
AnswerSets answerSets= (AnswerSets) o;
if (answerSets.getAnswersets () .isEmpty())
return;
AnswerSet as = answerSets.getAnswersets () .get (0);
try {
for (Object obj:as.getAtoms()) {
Cell cell = (Cell) obj;
sudokuMatrix|[cell.getRow ()] [cell.getColumn ()] = cell.getValue ();

}

} catch (Exception e) {
// Handle Exception

}

displaySolution();

For further information, contact embasp @mat.unical.it or visit our website.

2.8 Desktop ASP exemples

* Shortest-path ASP Java
» Shortest-path ASP Python
 Shortest-path ASP C#

2.9 Desktop PDDL examples

e Blocks-world PDDL Java
* Blocks-world PDDL Python
e Blocks-world PDDL C#

2.8. Desktop ASP exemples 27

../_static/doxygen/java/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1InputProgram.html
../_static/doxygen/java/interfaceit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Callback.html
../_static/doxygen/java/interfaceit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Callback.html
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/

EmbASP Documentation, Release 6.0

2.10 Android example

e Sudoku Android

28 Chapter 2. Examples

CHAPTER 3

Contacts

For further information, contact embasp @mat.unical.it or visit our website.

29

mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/

	Documentation
	Java implementation
	Python implementation
	C# implementation
	Technical documentation
	Implementations
	Technical documentation

	Examples
	Shortest-path ASP Java
	Shortest-path ASP Python
	Shortest-path ASP C#
	Blocks-world PDDL Java
	Blocks-world PDDL Python
	Blocks-world PDDL C#
	Sudoku Android
	Desktop ASP exemples
	Desktop PDDL examples
	Android example

	Contacts

